Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available August 4, 2026
-
Broadening participation in engineering needs to be different from filling the pipeline or national competitiveness. We should seek to empower students to use engineering knowledge and skills to create social change, address injustices, or develop problem-solving skills that can help transform lives. This study examined how migratory high school students developed beliefs about engineering’s capacity for social impact through participation in an activity where they learned how the engineering design process could be used to solve a need impacting agricultural workers. Specifically, we investigated how students' interest in engineering, their self-efficacy in applying engineering concepts, and the development of an identity as a future engineer influence the formation of their beliefs about their capacity to act purposefully and effectively using engineering practices. Migratory high school students represent an overlooked and underserved segment of students in U.S. schools. These students, often from Latinx backgrounds, remain underrepresented in engineering fields. To investigate the development of “engineering for social impact” among migratory high school students, we designed and implemented a culturally responsive and gamified engineering design activity. The activity aimed to connect engineering concepts to students’ cultural backgrounds and experiences while leveraging game-based learning elements to increase engagement. We administered pre- and post-surveys to measure changes in students’ engineering impact, interest, self-efficacy, and identity (n = 235). We used a multiple linear regression model to examine the relationships. Our results show that migratory students’ engineering interest and self-efficacy significantly supported the development of their belief that engineering could be a tool for social impact. Specifically, as students’ engineering interest increased, their perception that engineering could be used as a practice to address injustices significantly increased by 0.335 points. Similarly, as students’ engineering self-efficacy beliefs increased, that led to a significant increase of 0.346 points in their social impact beliefs. However, being recognized as someone who can do engineering (i.e., recognition beliefs) did not have a significant effect. The model explains approximately 46.7% of the variance in students’ beliefs about engineering as a tool for social impact. Our findings suggest that students’ engineering for social impact beliefs develop through experiences that enable them to see themselves as engineers and use engineering knowledge in meaningful ways. Our culturally responsive and gamified approach positively influenced students’ beliefs by fostering both interest and self-efficacy in engineering contexts. The results underscore the importance of creating learning environments and activities that not only spark interest in engineering but also build students’ confidence in their abilities to engage in engineering practices. For migratory Latinx high school students who face unique challenges in their educational journeys, cultivating engineering for social impact may be particularly crucial in garnering interest in the field. This study contributes to the growing body of research on the importance of connecting engineering to social and cultural context and provides insights into effective strategies for supporting underrepresented students in engineering. Future work should explore the longitudinal effects of such interventions and investigate additional factors that may influence the development of students’ social impact beliefs among migratory students.more » « lessFree, publicly-accessible full text available June 23, 2026
-
Free, publicly-accessible full text available May 4, 2026
-
Interpersonal skills are essential to engineers’ work as they regularly manage large projects, engage with people, collaborate in teams, and offer vital services to society. This study explores how twelve undergraduate students from migratory/seasonal farmworker (MSFW) backgrounds use their funds of knowledge in the form of interpersonal skills in engineering. An hour-long semi-structured interview protocol was designed and used to understand the funds of knowledge participants brought into their respective engineering classrooms. Using thematic analysis, we found that MSFW students accumulated multiple interpersonal skills, such as teamwork, organizational skills, empathetic practices, work ethic, and communication. This work adds to the existing literature on funds of knowledge and puts MSFW students and their unique assets in engineering at the forefront.more » « less
-
null (Ed.)Abstract Backgrounds This study examined how developing an engineering identity through the interplay between interest, recognition, and performance/competence beliefs and establishing a sense of belonging supported women’s persistence beliefs in engineering. Persistence belief in this study is captured through women’s certainty of graduating with an engineering degree. Students’ levels of motivation, affective states, and actions are based on what students believe to be true. Data were gathered from a survey administered to engineering students at nine institutions across the USA. Only female engineering students were used in the analysis. Students were further grouped into categories based on the representation of their race/ethnicity in engineering; 121 women were identified as minoritized in engineering, and 252 were identified as part of the majority group in engineering. Structural equation modeling was used to understand how the development of an engineering identity and modes of belonging (i.e., belonging in the major and in the classroom environment) supported women’s certainty to graduate with an engineering degree. All latent constructs were examined for measurement invariance; partial measurement invariance was achieved. Equality constraints on the structural paths of the model were not enforced to allow for differences across groups. Results Seeing oneself as an engineer (i.e., internal recognition) did not support minoritized women’s certainty to persist toward degree completion, whereas this internal recognition supported majority women’s persistence. Belonging in the major and belonging in the classroom environment did not support minoritized women’s certainty to persist. Establishing a sense of belonging in the classroom environment supported majority women’s certainty to persist. Minoritized women’s persistence toward degree completion was supported by their interest in engineering and their confidence in performing well in engineering coursework. However, interest in engineering was two times more influential toward minoritized women’s persistence than their performance competence beliefs. Conclusion These findings provide educators with a nuanced understanding of how identity development and modes of belonging differentially affect women’s persistence beliefs. These findings suggest that educators need to understand the powerful influence minoritized women’s interest in engineering has on their persistence beliefs and create mechanisms to continuously reinforce interest.more » « less
-
null (Ed.)Establishing and sustaining a sense of belonging is a necessary human motivation with particular implications for student learning, including in engineering. Students who experience a sense of belonging are more likely to display intrinsic motivation and establish a stronger sense of identity and persistence. It is important, however, to distinguish different domains of belonging, such as belonging to one’s university, belonging to a major, and belonging in the classroom setting. Our study examines if and how faculty support efforts contribute to diverse students’ sense of belonging in the classroom setting. Specifically, we sought to answer the following research questions: Which faculty support efforts promote a sense of classroom belongingness? Do faculty support efforts differentially promote a sense of classroom belongingness for students based on their demographic characteristics? Data for this study was collected in the Fall of 2018, across ten institutions, n = 819. We used the Faculty Support items from the STEM Student Perspectives of Support Instrument developed from Lee’s model of co-curricular support to answer our research questions. Demographic categories were created to understand if and how faculty support efforts differentially promote a sense of belonging for minoritized students compared to their counterparts. Multiple regression analysis was conducted to examine the faculty support efforts that fostered a sense of belonging in the classroom. Interaction effects were included to understand how faculty support efforts affected classroom belongingness for the students in the demographic groups we identified. Minoritized women were less likely to feel a sense of belonging in the classroom when compared to majoritized men. Neither groups of women believed that their instructors wanted them to succeed, thus negatively impacting their classroom belongingness. There were, however, faculty support efforts that positively contributed to a sense of belonging in the classroom for minoritized women, including instructors’ availability, knowing that they could ask instructors for help in course-related material, and when instructors fostered an atmosphere of mutual respect. Additionally, minoritized women felt a sense of classroom belonging when they could capitalize on their previous experiences to scaffold their learning. Our findings highlight classroom practices and strategies faculty can use in the classroom to support minoritized women’s sense of belonging. These practices and strategies will be a crucial resource for engineering educators and administrators who seek to improve the field’s retention of minoritized and women students. Whereas efforts have been made to recruit minoritized students into engineering, our study points to a clear and crucial role for faculty to play: they can support minoritized students by fostering a sense of belonging in engineering classrooms.more » « less
-
First-generation college students in engineering accumulate bodies of knowledge through their working-class families. In our ethnographic data of first-generation college students, we identified tinkering knowledge from home and from work, perspective taking, mediational ability, and connecting experiences as knowledge sources brought to engineering. The purpose of this paper was to understand how first-generation college students’ accumulated bodies of knowledge (i.e., funds of knowledge) support their beliefs about performing well in engineering coursework, feeling a sense of belonging in the classroom, and certainty of graduating. Data for this study came from a survey administered in the Fall of 2018 from ten universities across the US. In this study, only the sample of students who indicated their parents had less than a bachelor’s degree (n = 378) were used. A structural equation modeling technique was employed to examine several interconnected research questions pertaining to funds of knowledge, performance/competence beliefs, classroom belongingness, and certainty of graduating with an engineering degree. Our analysis demonstrates that the accumulated bodies of knowledge obtained through tinkering at home, tinkering at work, and the skill of being a mediator served to scaffold concepts that students were currently learning in engineering. There was a negative direct relationship between students’ ability to make connections between their home activities to scaffold what they are currently learning and their certainty of graduating with an engineering degree. However, first-generation college students’ perceptions of performing well in their engineering coursework and their sense of belonging in the classroom positively supported their certainty of graduating thus emphasizing the importance of connecting students’ funds of knowledge to engineering coursework and classroom instruction. Implications for possible approaches towards connecting first-generation college students’ funds of knowledge to engineering coursework and classroom culture are discussed.more » « less
-
Abstract BackgroundStudents who are the first in their families to attend college are an integral part of undergraduate engineering programs. Growing bodies of research argue that educators could better support these students if they understood the unique backgrounds, experiences, and knowledge they bring with them to higher education. Purpose/HypothesisThe purpose of this article is twofold. First, we identify salient funds of knowledge used by a group of first‐generation college students in their educational and work‐related experiences. Secondly, we use the funds of knowledge identified in our participants' experiences to create a survey instrument. Design/MethodA mixed methods approach was used. Ethnographic interview data of six first‐generation college students were used to hypothesize constructs and create survey items. Survey data were collected from 812 students. Exploratory and confirmatory factor analyses were used to verify the underlying theoretical structures among the survey items and hypothesized constructs. ResultsValidity evidence supported a 10‐factor model as opposed to the hypothesized 6‐factor model. The 10 latent constructs that make up the funds of knowledge instrument are as follows: tinkering knowledge from home, tinkering knowledge from work, connecting experiences, networks from family members, networks from college friends, networks from coworkers, networks from neighborhood friends, perspective taking, reading people, and mediating ability. ConclusionsRecognizing first‐generation college students' funds of knowledge is a first step to creating curricular spaces and experiences that better serve them. A survey scale allows educators to empirically examine how these accumulated bodies of knowledge are transmitted to capital, create advantages in engineering, and provides a useful tool to bridge students' knowledge in the classroom.more » « less
An official website of the United States government

Full Text Available